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1 Introduction
Over the years researchers have used many methods to measure risk preferences.1

They have also represented lotteries in many ways. In Figure 1 we illustrate this
diversity with only a few examples. While some researchers use only an alphanumeric
representation (Figure 1a), most also include a visual representation. Most often
only the probabilities are visually represented (Figures 1b and 1c), sometimes both
probabilities are payoffs are (Figure 1d). Payoffs are never represented alone.

While there is a large literature comparing the pros and cons of the different
elicitation methods,2 we know little whether the choice of a lottery representation
makes a difference. Harrison and Rutström (2008a, Appendix A) reviewed different
lottery representations and concluded: ‘To date no systematic comparison of these
different methods have been performed and there is no consensus as to what con-
stitutes a state of the art representation’. Sizeable literatures outside of economics,
for example the risk communication literature (Stone et al., 1997) and the medical
decision-making literature (Oudhoff and Timmermans, 2015), suggest that the way
we represent lotteries do affect people’s judgements.

Finding whether the representation matters is an important question for at least
three audiences. Experimentalists need to know whether they introduce a bias
in their experiments when they choose a particular representation. Consumers of
experimental results need to know whether they can trust results obtained using
different representations. If the representation matters, theorists can build new
models to explain this result.

We show that the choice of lottery representation is not innocuous. In our
experiments, we manipulate the representation while keeping the elicitation method
fixed. Our representation allows us to represent probabilities or payoffs or both
in a controlled way and to separate the effect of representing each attribute.
When looking at the raw response data, we find no difference between the different
representations. But when we estimate risk preference parameters using a structural
model, we find that the choice of representation matters.

1To give only a few examples: pairwise choice (Camerer, 1989; Hey and Orme, 1994), the
bissection method (Abdellaoui, 2000), multiple price lists (Holt and Laury, 2002), certainty
equivalent elicitation (Bruhin et al., 2010), and the bomb task (Crosetto and Filippin, 2013).

2See for example Harbaugh et al. (2010), Charness et al. (2013), Pedroni et al. (2017), Crosetto
and Filippin (2016) and Holzmeister and Stefan (2021)
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(a) Bruhin et al. (2010) (b) Hey and Orme (1994)

(c) Abdellaoui (2000) (d) Camerer (1989)

Figure 1: Different lottery representations used in different experiments.
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In our baseline, we use an alphanumeric representation of lotteries and thus
describe lotteries to subjects using words and numbers, such as “A win of e25.00
for numbers between 1 and 25, and a win of e10.00 for numbers between 26 and
100”. Then, in our pictorial treatments, we add visual representations in which
the visual display of a lottery attribute is proportional to its value. When we
represent probabilities, we use horizontal space to show the range of winning
numbers. When we represent payoffs, we use vertical space to show the amount of
money won. When we represent both probabilities and payoffs, we combine both
types of representation.

We use the elicitation method of Bruhin et al. (2010) to measure risk preferences
for 25 lotteries. Compared to other elicitation methods such as the one of Holt
and Laury (2002), this method has the advantage of mapping the evaluation of
lotteries to a single scale, the money scale via certainty equivalents. We refine the
method of Bruhin et al. (2010) by using an iterative procedure to obtain more
precise certainty equivalents.

When we look at certainty equivalents reported by subjects, we see that, compared
to a simple alphanumeric representation, all visual representations result in higher
certainty equivalents. However, none of the differences are statistically significant.

We then estimate risk preference parameters using a structural model and
maximum likelihood techniques. We consider both expected utility and rank-
dependent utility models. We perform the estimation in different ways: at the
sample level where we decompose the effect of the treatments on the different
parameters; and at the individual level where we estimate the models for each
subject, then compare the distribution of parameters between treatments. We
also estimate a random coefficient model using maximum simulated likelihood, in
which we recover individual estimates post estimation and then also compare these
recovered coefficients between treatments.

All these estimations point towards the same conclusion: while representing only
probabilities or payoffs has no impact on the structural parameters, representing
both decreases the curvature of the utility function of money and thus makes
subjects less risk averse. We find an increase of about 11% in the curvature
parameter, moving a concave utility function of money towards linearity. This is
true both under expected utility and under rank-dependent utility. On the other
hand, none of the representations affect the parameters of the probability weighting
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function.
We also observe that the representation has an effect on decision noise. In

particular, our results suggest that representing probabilities alone increases noise,
while representing both probabilities and payoffs decreases it. We also see that
representing payoffs alone tend to increase the number of times subjects report
multiple switching points when facing a lottery.

To the three audiences, we can thus say the following. To the experimentalists,
we say that the representation has an effect on the elicited parameters, even if
it does not affect the raw certainty equivalents. In particular, our results suggest
that representing probabilities or payoffs alone may not be the best choice, as
it results in either more noise or more mistakes. The consumers of experimental
results can be reassured that, while the representation matters, we do not see
radical differences between the representations. Well-known regularities—people
are risk-averse, the probability weighting function is inverse S-shaped—are true
no matter the representation. Finally, to the theorists, we offer a new puzzle:
representing both probabilities and payoffs makes subjects less risk-averse.

We also offer a set of lotteries representations that have been tested. Subsequent
researchers can use our lottery representations, knowing whether and how they
affect risk preferences. We have open-sourced and released them on GitHub as
lottery.js. With a few steps they can be easily integrated into any web-based
experimental software such as Qualtrics, oTree (Chen et al., 2016), or LIONESS
(Giamattei et al., 2020).

Related literature Habib et al. (2017) and Segovia et al. (2022) have also looked
at the effect of lottery representations on risk preferences, but they have done so in
the context of the elicitation method from Holt and Laury (2002). In this method,
subjects make repeated pairwise choices between lotteries. Most often, the lotteries
are organised in a table with varying probabilities or payoffs. As a consequence,
the introduction of the lottery representation affects two or more lotteries at the
same time. By contrast, our elicitation method allows our treatments to always
affect only one lottery at a time. Since our method elicits certainty equivalents, we
can also directly map the effects into a single monetary scale.

Habib et al. (2017) compare an alphanumeric representation to a visual represent-
ation in which probabilities and payoffs are always represented together in a 3D pie
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chart. As such, they do not represent each attribute independently. Instead, they
manipulate whether only the 3D pie chart is provided or both the alphanumeric
representation and the 3D pie chart are provided. Despite these differences, they
also find that representing both probabilities and payoffs—in their case with 3D
pie charts—makes subjects less risk averse.

The representations used by Segovia et al. (2022) are the closest to ours. They also
use horizontal and vertical space to represent independently or jointly probabilities
and payoffs. Their representation and their experiment are set up to allow them to
collect eye-tracking data. Contrary to us, they do not find an effect of the lottery
representation.

2 Experimental design
The goal of our experiment is to test different lottery representations and tease out
the effect of representing each attribute. We start from a standard risk-elicitation
task and add our different lottery representations. All comparisons are made
between-subject.

2.1 Baseline

We build on Bruhin et al. (2010). Subjects face 25 lotteries, whose order is random-
ised for each subject. The lotteries are displayed in Table 1.3 For each of the 25
lotteries, subjects report their certainty equivalent using tables. For each row of
the tables, subjects choose between the left option, Option A, and the right option,
Option B. Option A is always the same lottery in a given table, and Option B is a
sure amount of money. It starts high at the top of the table, and decreases as we
go down the table.

3These are the ‘gain’ lotteries from Bruhin et al. (2010), with the amounts in Swiss francs
divided by two to convert them to Euros. This conversion ensures that the lotteries in
our experiment have about the same purchasing power as in Bruhin et al. (2010). In 2003,
when Bruhin et al. (2010) conducted their experiments in Switzerland, the net average
income was 63 909.65 CHF. In 2022, when we conducted our experiments in Austria, it
was 35 837.40 e. Therefore, to keep payoffs comparable we need to divide the payoffs in
Bruhin et al. (2010) by 63 909.65/35 837.40 ≃ 1.78, which we rounded to 2. (Source: OECD,
https://stats.oecd.org/index.aspx?queryid=55145)
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Table 1: Lotteries used in the experiment (x1 and x2 in Euros).

p1 x1 p2 x2 First increment Second increment Third increment

0.05 10 0.95 0 1 0.1
0.05 20 0.95 5 1.5 0.15
0.05 25 0.95 10 1.5 0.15
0.05 75 0.95 25 5 0.5
0.1 5 0.9 0 0.5
0.1 10 0.9 5 0.5
0.1 25 0.9 0 2.5 0.25
0.25 10 0.75 0 1 0.1
0.25 20 0.75 5 1.5 0.15
0.25 25 0.75 10 1.5 0.15
0.5 5 0.5 0 0.5
0.5 10 0.5 5 0.5
0.5 20 0.5 5 1.5 0.15
0.5 25 0.5 0 2.5 0.25
0.5 25 0.5 10 1.5 0.15
0.5 75 0.5 0 7.5 0.75 0.075
0.75 10 0.25 0 1 0.1
0.75 20 0.25 5 1.5 0.15
0.75 25 0.25 10 1.5 0.15
0.9 5 0.1 0 0.5
0.9 10 0.1 5 0.5
0.9 25 0.1 0 2.5 0.25
0.95 10 0.05 0 1 0.1
0.95 20 0.05 5 1.5 0.15
0.95 25 0.05 10 1.5 0.15
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Figure 2: Example of a task

The only substantial modification we make to Bruhin et al. (2010) is the use
of an iterative procedure inspired by Andersen et al. (2006) in order to get more
precise certainty equivalents. Subjects first see a table with 11 certainty equivalent
uniformly distributed between the largest and smallest amount of money in the
lottery. Then, if the switching point is interior, subjects see a second table where
the sure amounts are uniformly distributed between the sure amounts where the
subject switched in the first table. We stop generating tables for a given lottery
when the step between two sure amounts is lower than 0.5 e.

Figure 2 provides an example with the lottery (25e, 0.25 ; 10e, 0.75): the sure
amounts range between 25 e and 10 e, so the increment is (25 − 10)/10 = 1.5e. If
a subject chooses Option B with a sure amount of 22 e but Option A with 20.50 e,
the second table would feature sure amounts ranging between 22 e and 20.50 e,
with an increment equal to (22 − 20.5)/10 = 0.15e. Therefore, for this particular
lottery, subjects only see two tables.

All in all, subjects see a single table for 6/25 lotteries, two tables for 18/25
lotteries, and three tables for only one lottery. We calculate the certainty equivalent
as the average between the last sure amount for which the subject chose Option B
and the next, smaller amount.4

For our iterative procedure to work, we require subjects to have a unique switching
point in the table. If they try to submit a table with multiple switching points or if
they switch instead from Option A to Option B, they see an error message and
are asked to change their answers. We keep track of the number of times a subject

4By contrast, all lotteries in Bruhin et al. (2010) appeared in a single table of 20 lines. Since
different lotteries have different ranges between their maximum and minimum payoffs, different
tables have also different sure amount increments, ranging from 0.5 CHF to 5 CHF. Therefore,
one potentially makes a greater error when computing the certainty equivalent for lotteries
with a larger spread. Our iterative procedure alleviates this issue.
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tried to incorrectly submit a table. Subjects can still submit a table in which they
have chosen Option A or Option B everywhere; in that case they do not see the
next table, if any.

In the Baseline, lotteries are represented alphanumerically, such as “A win of
25.00 e for numbers between 1 and 25, and a win of 10.00 e for numbers between
26 and 100”. From this Baseline we have three treatments, which are all displayed
in Figure 3.

2.2 Probabilities represented

Our first treatment is similar in all aspects to the Baseline, except that in addition
to the alphanumeric representation, the probability dimension of the lotteries is
represented visually via the partition of the horizontal box below a lottery’s payoffs,
as shown in Figure 3a.

2.3 Payoffs represented

Our second treatment is similar in all aspects to the Baseline, except that in
addition to the alphanumeric representation, the payoff dimension of the lotteries
is represented visually via the height of the box drawn to contain each lottery’s
non-zero payoffs, as shown in Figure 3b. The tallest bar corresponds to the largest
winning amount in the experiment, and all other bars are scaled with respect to it.

2.4 Probabilities and payoffs represented

Our last treatment is similar in all aspects to the Baseline, except that in addition
to the alphanumeric representation, we employ both of the visual cues introduced
in the previous two treatments. Hence, the lotteries are represented as shown in
Figure 3c. The resulting area corresponds to the expected value of the lottery.

2.5 Incentives and implementation details

At the end of the experiment and independently for each subject, we selected a
lottery and a row in its first table. If, for this row, subjects had chosen Option A,
then they would play the lottery by drawing a numbered chip from a bag of 100
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(a) Probabilities represented

(b) Payoffs represented

(c) Probabilities and payoffs represented

Figure 3: The different lottery representations
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chips. If, for this row and the next row, they had chosen Option B, they would
receive the sure amount of money of the row randomly chosen. Finally, if they had
chosen Option B for this row, but Option A for the next row, we would draw a
row at random in the second table and repeat the process; unless this was the last
available table, in which case subjects would simply receive what they had chosen.

The experiment took place at the laboratory of the Vienna Center of Experimental
Economics of the University of Vienna between March and June 2022. Sessions
lasted about one hour and subjects earned on average 13.73 e from the lotteries,
plus a show-up fee of 4 e. We had 119 subjects in the baseline, 119 in the
probability treatment, 120 in the payoff treatment, and 120 in the both treatment.
Our experiment was pre-registered.5

3 Results

3.1 Certainty equivalents

We start by looking at raw certainty equivalents. Figure 4 reports the mean certainty
equivalent reported in each treatment. We see that all representations result in
higher mean certainty equivalents than the baseline, where only an alphanumeric
representation of the lottery was provided. However, no difference is statistically
significant. In Appendix A.3 we report the results of a regression of the certainty
equivalent on the treatment dummies in which we further control for lottery, lottery
order, session, and the number of times a subject tried to submit an incorrect table.
We still find no statistically significant difference between the baseline and any of
the treatments.

We also look at whether some lotteries respond better to the treatments than
others. In Table 2 we show that lotteries with a zero outcome received a significantly
higher certainty equivalent when both probabilities and payoffs are represented.
In Appendix A.3 we look at other lottery characteristics on top of having a zero
outcome: the standard deviation or being left- or right-skewed. We find that only
the interaction between the treatment and having a zero outcome is significant.

5https://osf.io/z2fjp
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Table 2: Effect of representations on certainty equivalents for lotteries with and
without zero outcomes, OLS.

(1) (2)
Intercept 19.36*** 19.69***

(0.23) (0.52)
Representing probabilities −0.06 −0.06

(0.23) (0.23)
Representing payoffs −0.04 0.14

(0.23) (0.73)
Representing both 0.00 0.20

(0.24) (0.76)
Lotteries with zero outcome −17.02*** −17.00***

(0.25) (0.25)
Lotteries with zero outcome × Representing probabilities 0.35 0.34

(0.22) (0.22)
Lotteries with zero outcome × Representing payoffs 0.24 0.24

(0.22) (0.22)
Lotteries with zero outcome × Representing both 0.57** 0.58**

(0.21) (0.21)
Lottery order −0.03***

(0.01)
Number submissions with multiple switch 0.04

(0.03)
Number submissions with switch in wrong direction 0.96*

(0.45)
Lottery dummy ✓ ✓
Session dummy ✗ ✓
R2 0.74 0.74
n 10 335 10 335
Notes. Standard errors clustered on subjects.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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3.2 Structural estimations

3.2.1 Sample-level estimation

We now move to structural estimation. For that, we first need to specify a structural
model. The lotteries can be written as L =

(
p, x1; (1 − p), x2

)
with x1 > x2. The

utility of the lottery is given by

U(L) = w(p) · u(x1) + w(1 − p) · u(x2)

where w is a probability weighting function and u is a utility function of money.
When w(p) = p, U is expected utility; otherwise, it is rank-dependent utility.

We follow closely Bruhin et al. (2010). For u we use the power, CRRA utility
function u(x) = xα. Since we have 0 outcomes in the experiment, we have to restrict
α ≥ 0. For w we use the Goldstein and Einhorn (1987) probability weighting function

w(p) = δpγ

δpγ + (1 − p)γ

with γ ≥ 0 and δ ≥ 0.
In the experiment, subjects report certainty equivalents CE. Denote by ĈE the

certainty equivalent derived from the model above:

ĈE = u−1
(
w(p) · u(x1) + w(1 − p) · u(x2)

)
.

To take the model to the data, we add Fechner errors ϵ to the certainty equivalents
such that CE = ĈE + ϵ with ϵ ∼ N (0, σ2). In other words, subjects make mistakes
when reporting their certainty equivalents; such mistakes are mean-zero and are
independently and identically distributed across lotteries.

We estimate the parameters via maximum likelihood.6 We start by estimating
the parameters on the whole sample, in effect assuming that all subjects have the
same parameters. Therefore, we estimate θ = (α) in the case of EU and θ = (α, γ, δ)
in the case of RDU, as well as the noise parameter σ. For the certainty equivalent
of lottery n ∈ {1, . . . , 25} reported by subject i ∈ {1, . . . , I} the contribution to

6We use R (R Core Team, 2023) with the maxLik package (Henningsen and Toomet, 2011). We
rely on the BFGS algorithm with numerical derivatives.

14



the likelihood is the density

f(CEi,n; θ, σ) = 1√
2πσ2

exp

−

(
CEi,n − ˆCEi,n(θ)

)2

2σ2


and the sample log-likelihood ln L(θ, σ; CE) = ∑I

i=1
∑25

n=1 ln f(CEi,n; θ, σ).
To capture the effect of the representation on the parameters, we decompose

them as

α = α0 + 1probabilities αprobabilities + 1payoffs αpayoffs + 1both αboth,

δ = δ0 + 1probabilities δprobabilities + 1payoffs δpayoffs + 1both δboth,

γ = γ0 + 1probabilities γprobabilities + 1payoffs γpayoffs + 1both γboth,

σ = σ0 + 1probabilities σprobabilities + 1payoffs σpayoffs + 1both σboth,

where 1treatment is an indicator function equal to 1 if we are in the specified treatment
and equal to 0 otherwise.

Table 3 shows the results. We see that, both under EU and under RDU, rep-
resenting both probabilities and payoffs increases by about 11% the curvature
parameter of the utility function of money α. The representations have no effect
on the parameters of the probability weighting function. Therefore, the increase in
α corresponds to a decrease in risk aversion.

Further, the representations affect differently the noise parameter σ depending
on whether we assume EU or RDU: under EU, representing probabilities or payoffs
increases σ while representing both does not; under RDU, representing probabilities
or both increases σ while representing payoffs does not.

Our estimates are in line with the previous literature. For example, despite the
difference in sample, currency, and procedures, our estimates of δ and γ—0.94
and 0.33—are similar to those found in Bruhin et al. (2010, Table V, CPT Types,
Pooled)—0.926 and 0.377. We observe more curvature of u than Bruhin et al.
(2010), but we are still within the ranges commonly found in the literature: when
comparing the estimates reported in the literature, Stott (2006, Table 5) finds
estimates for α of a power utility function ranging between 0.19 and 0.89, while we
find 0.53 and 0.59 for EU and RDU.

To assess the robustness of these findings, in Appendix A.4 we estimate the
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Table 3: Sample-level estimation, decomposi-
tion of the structural parameters.

EU RDU
α0 0.53*** 0.59***

(0.01) (0.01)
αprobabilities 0.03 0.03*

(0.01) (0.01)
αpayoffs 0.01 0.03

(0.01) (0.01)
αboth 0.06*** 0.07***

(0.01) (0.02)
δ0 0.94***

(0.01)
δprobabilities −0.01

(0.02)
δpayoffs −0.01

(0.02)
δboth −0.01

(0.02)
γ0 0.33***

(0.01)
γprobabilities −0.02

(0.02)
γpayoffs −0.02

(0.02)
γboth 0.02

(0.02)
σ0 5.07*** 4.11***

(0.05) (0.14)
σprobabilities 0.35*** 0.31*

(0.10) (0.15)
σpayoffs 0.22* 0.18

(0.10) (0.15)
σboth 0.17 0.30*

(0.09) (0.15)
Log Likelihood −31 819.80 −29 755.04
Notes. * p < 0.05, ** p < 0.01, *** p < 0.001.
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same functional forms but independently for each subject. We also estimate the
distribution of the parameters in a random coefficient framework using maximum
simulated likelihood (see Conte et al., 2011 and von Gaudecker et al., 2011 for similar
approaches). We find the same qualitative results: representing both probabilities
and payoffs increases the curvature parameter of the utility function of money
α, and the representations have no effect on the parameters of the probability
weighting function γ and δ. In terms of the noise parameter σ, we find some
evidence that representing only probabilities increases noise while representing both
probabilities and payoffs decreases it.

3.2.2 Mixture model

We also estimate a mixture model in the manner of Harrison and Rutström (2008b).
We assume that a proportion of observations pEU follows EU and that a proportion
of observations 1−pEU follows RDU, and estimate pEU in addition to the parameters
of each model. Instead of decomposing the parameters between treatment, as we
did previously, we now decompose pEU as

pEU = pEU
0 + 1probabilities pEU

probabilities + 1payoffs pEU
payoffs + 1both pEU

both.

pEU
0 gives the baseline proportion of EU observations, while the other parameters

show how the proportion changes with the representation.
Table 4 shows the results. We estimate that about 40% of the observations can

be attributed to EU. Representing both probabilities and payoffs increases the
proportion of EU observations to about 45%, a 12% increase.

3.3 Switching points and decision times

We finally analyse a number of secondary outcomes that we also measured in our
experiment.

We measured the number of times subjects tried to submit tables where they
switched in the wrong direction, meaning they switched from the lottery on the
left to the certainty equivalents on the right. By doing so, they essentially violate
first-order stochastic dominance. Compared to the baseline, we find some evidence
that this was higher when representing payoffs only (clustered Wilcoxon rank-rum
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Table 4: Mixture model.

Estimate (SE)
αEU 1.13***

(0.01)
αRDU 0.55***

(0.01)
δ 0.94***

(0.01)
γ 0.18***

(0.01)
σEU 1.69***

(0.05)
σRDU 4.52***

(0.05)
pEU

0 0.40***

(0.02)
pEU

probabilities 0.00
(0.02)

pEU
payoffs −0.01

(0.02)
pEU

both 0.05*

(0.02)
Log Likelihood −28 352.95
Notes. * p < 0.05, ** p < 0.01, *** p < 0.001.
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test, p = 0.058). The other treatments do not differ significantly from the baseline
(p > 0.218).

We also measured the number of times subjects tried to submit tables with
multiple switching points. Such behaviour can indicate random behaviour or a
misunderstanding of the task. We find some evidence that the number of switches
in the wrong direction is higher when we represent payoffs only (clustered Wilcoxon
rank-rum test, p = 0.068); the other treatment again do not show any significant
differences (p > 0.452).

Finally, we measured the time subjects took to submit each table. We do not
find any difference between the treatments (p > 0.23).

4 Discussion and conclusion
In our experiments, we manipulate the way we represent lotteries while keeping
the elicitation method fixed. We find that the choice of representation does matter
and affects the risk preferences elicited.

Our representations use horizontal and vertical bars to represent probabilities and
payoffs. We note that pie charts are another popular way of representing probabilities
in the risk preference literature. We chose our particular representation because it
allows us to manipulate probabilities and payoffs independently. Further, there is
still a large debate around the appropriateness of pie charts to represent proportions
(Spence, 2005).7

Our most consistent result is that representing both probabilities and payoffs
makes subjects less risk averse. Previous research using different elicitation methods
with different representations in different contexts has reached a similar conclusion
(Friedman et al., 2022; Habib et al., 2017), so this result appears to be a regularity.
While our experiment was not designed to explain this result, we can offer some
leads. When we represent both probabilities and payoffs, we essentially display the
expected value of a lottery. This extra information might provide an anchor to
subjects and help them report their risk preferences. We can also think of a salience

7Some studies find that pie charts perform worse (Cleveland and McGill, 1984), and others, that
they perform better (Simkin and Hastie, 1987). It is also unclear what people really respond
to when facing a pie chart (Kosara, 2019; Skau and Kosara, 2016). Further, pie charts are
not well suited to represent probabilities that are not multiples of 25%, and discrimination
between a 5% and a 10% probability on a pie chart is difficult (Spence, 2005).
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(Bordalo et al., 2012) or focusing (Kőszegi and Szeidl, 2013) channel: attention is
more heavily directed to the represented attribute; both attributes thus need to be
represented if one does not want to favour one attribute to the detriment of the
other.
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Appendices
Appendix A Additional results and figures
A.1 Certainty equivalents by lottery
In Figure A1 we look at mean certainty equivalents for each lottery.

A.2 Standardised absolute deviations from expected value
We also look at how certainty equivalents vary during the course of the experiment.
To do that, we compute normalised absolute differences from the expected value of
a lottery

C̄E = |CE − EV|
EV

and regress on C̄E treatment dummies, the lottery number, the interaction between
the two, and controls. The results of this regression are in Table A1. We see that,
overall, representing payoffs results in higher normalised absolute difference from
the expected value. However, as the experiment progresses, the difference shrinks.

A.3 Certainty equivalent regressions
Table A2 report the results of an ordinary least square regression of certainty
equivalent on treatment dummies. In model (1) we add lottery dummies to control
for the fact that different lotteries had different expected values. In model (2) we
further control for

• the order of the lottery in the experiment, which was randomised for each
subject;

• the number of times a subject tried to submit a table with multiple switching
points;

• the number of times a subject tried to submit a table with a switching point
in the wrong direction; and finally,

• session effects by adding session dummies.
The effect of the treatment remain statistically insignificant in all models.
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Table A1: Effect of treatments and lottery number on C̄E,
OLS regression.

β (SE)
Intercept 4.26***

(0.19)
Representing probabilities 0.05

(0.06)
Representing payoffs 0.17•

(0.10)
Representing both 0.10

(0.11)
Lottery number 0.00

(0.00)
Representing probabilities × lottery number 0.00

(0.00)
Representing payoffs × lottery number −0.01**

(0.00)
Representing both × lottery number 0.00

(0.00)
Lottery dummy ✓
Session dummy ✓
R2 0.48
n 10 335
Notes. Standard errors clustered on subjects.
• p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A2: Effect of representations on certainty equivalents, OLS.

(1) (2)
Intercept 2.49*** 2.85***

(0.18) (0.50)
Representing probabilities 0.10 0.10

(0.26) (0.26)
Representing payoffs 0.07 0.26

(0.26) (0.75)
Representing both 0.26 0.47

(0.27) (0.78)
Lottery order −0.03***

(0.01)
Number submissions with multiple switch 0.05

(0.03)
Number submissions with switch in wrong direction 0.95**

(0.45)
Lottery dummy ✓ ✓
Session dummy ✗ ✓
R2 0.74 0.74
n 10 335 10 335
Notes. Standard errors clustered on subjects.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure A1: Mean certainty equivalents for each lottery and in each treatment.
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Table A3: Effect of representations on certainty equivalents for lotteries with
different characteristics, OLS.

(1) (2)
Intercept 8.61*** 9.32***

(2.02) (2.08)
Representing probabilities −0.06 −0.04

(0.35) (0.35)
Representing payoffs 0.08 0.24

(0.37) (0.77)
Representing both −0.40 −0.23

(0.34) (0.74)
Lotteries with zero outcome −7.49*** −7.46***

(0.16) (0.16)
Lotteries with zero outcome × Representing probabilities 0.29 0.29

(0.17) (0.17)
Lotteries with zero outcome × Representing payoffs 0.23 0.23

(0.17) (0.17)
Lotteries with zero outcome × Representing both 0.37* 0.38*

(0.17) (0.17)
Left-skewed lottery 9.08*** 8.74***

(1.84) (1.85)
Left-skewed lottery × Representing probabilities −0.12 −0.13

(0.28) (0.28)
Left-skewed lottery × Representing payoffs −0.17 −0.14

(0.27) (0.27)
Left-skewed lottery × Representing both 0.26 0.29

(0.26) (0.27)
Right-skewed lottery 4.97** 4.61*

(1.80) (1.81)
Right-skewed lottery × Representing probabilities 0.04 0.03

(0.24) (0.25)
Right-skewed lottery × Representing payoffs −0.02 0.00

(0.20) (0.21)
Right-skewed lottery × Representing both −0.19 −0.17

(0.26) (0.26)
Standard deviation 0.51*** 0.50***

(0.06) (0.06)
Standard deviation × Representing probabilities 0.02 0.02

(0.05) (0.05)
Standard deviation × Representing payoffs 0.01 0.01
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(0.05) (0.05)
Standard deviation × Representing both 0.07 0.07

(0.05) (0.05)
Lottery order −0.03***

(0.01)
Number submissions with multiple switch 0.05

(0.03)
Number submissions with switch in wrong direction 0.93*

(0.45)
Lottery dummy ✓ ✓
Session dummy ✗ ✓
R2 0.74 0.74
n 10 335 10 335
Notes. Standard errors clustered on subjects.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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A.4 Additional structural estimations
A.4.1 Individual-level estimation

Here, instead of estimating the parameters at the sample level, as we did in the
main text, we estimate the parameters independently for each subject, meaning
that for each subject i we obtain estimates of θi and σi. The subject log-likelihood
is

ln Li(θi, σi; CEi) =
25∑

n=1
ln f(CEi,n; θi, σi).

The model converges and we can recover estimates and standard errors for 444
subjects (out of 457) under EU and for 434 subjects under RDU.8

Figure A2 shows box plots of the estimated parameters under EU, and Figure A3,
under RDU. As before, we find that representing both payoffs and probabilities
increases α. Under RDU, we do not observe a statistically significant effect of the
representations on the parameters of the probability weighting function, δ and γ.
Finally, we find that representing both probabilities and payoffs decreases σ under
EU, while representing probabilities increases σ under RDU.

A.4.2 Random coefficients estimation

Finally, as a middle-ground, we assume that the parameters are distributed in the
sample according to some probability distributions and estimate the parameters of
these distributions. Since α ≥ 0, δ ≥ 0 and γ ≥ 0, we assume that the parameters
are log-normally distributed:

ln α ∼ N (µα, σ2
α),

ln δ ∼ N (µδ, σ2
δ ),

ln γ ∼ N (µγ, σ2
γ),

In addition, we assume that these parameters are distributed independently of each
other. We also assume that the noise parameter σ is the same for the whole sample.

In the case of EU, denote by θEU = (µα, σα) the parameters to estimate, and
by gEU(α) the density of α. Similarly, in the case of RDU, denote by θRDU =
(µα, σα, µδ, σδ, µγ, σγ) the parameters and by gRDU(α, δ, γ) the joint density. In both
cases we also estimate σ.

8Under EU, we are missing 2 subjects in baseline, 2 when probabilities are represented, 4 when
payoffs are represented, and 5 when both are represented. Under RDU, we are missing 4
subjects in baseline, 6 when probabilities are represented, 5 when payoffs are represented, and
8 when both are represented.
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Figure A2: Box plots of the estimated parameters under EU. p-values from two-
sided Wilcoxon rank-sum tests.
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Figure A3: Box plots of the estimated parameters under RDU. p-values from
two-sided Wilcoxon rank-sum tests.
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The joint density of the 25 certainty equivalents of subject i is

25∏
n=1

f(CEi,n; θi, σ).

Therefore, under EU, the contribution to the likelihood for subject i is

Li(θEU, σ; CEi) =
∫
R+

25∏
n=1

f(CEi,n; α, σ) gEU(α) dα,

and, under RDU,

Li(θRDU, σ; CEi) =
∫∫∫
R+

25∏
n=1

f(CEi,n; α, δ, γ, σ) gRDU(α, δ, γ, σ) dα dδ dγ.

The sample log-likelihood is then the sum across all subjects of the logarithms of
these likelihoods.

We estimate the parameters using maximum simulated likelihood (see Conte
et al., 2011 and von Gaudecker et al., 2011 for similar approaches).9 The results
are in Table A4.

After the estimation, we can recover a posterior estimate of each parameter and
for each subject, conditional on their n certainty equivalents. Figure A4 shows box
plots of the posterior estimates of α under EU, and Figure A5, of the parameters
under RDU. We obtain the same results as previously: representing probabilities
and payoffs at the same time increases α both under EU and under RDU. On
the other hand, under RDU, none of the representations have an effect on the
probability weighting function.

9We use Halton sequences of length 100 per individual.
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Table A4: Random coefficients estimation,
maximum simulated likelihood.

EU RDU
µα −0.58*** −0.34***

(0.05) (0.01)
σα 1.19*** 0.75***

(0.03) (0.02)
µδ −0.07***

(0.00)
σδ 0.10***

(0.00)
µγ −1.22***

(0.03)
σγ 0.78***

(0.03)
σ 4.07*** 2.52***

(0.03) (0.02)
Log Likelihood −29 899.60 −25 663.85
Notes. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure A4: Box plot of the posterior estimates of α under EU. p-value from two-
sided Wilcoxon rank-sum tests.
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Figure A5: Box plots of the posterior estimates of the parameters under RDU.
p-value from two-sided Wilcoxon rank-sum tests.
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